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Diffusion and percolation in anisotropic random barrier models

Sebastian Bustingorry
Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Rı´o Negro, Argentina

~Received 29 October 2003; published 24 March 2004!

An anisotropic random barrier model is presented, in which the transition probabilities in different directions
have different probability density functions. At low temperatures, the anisotropic long-time diffusion coeffi-
cients, obtained using an effective medium approximation, follow an Arrhenius temperature dependence, with
the same activation energy for each direction. Such activation energy is related to the anisotropic percolation
properties of the lattice, and can be analyzed in terms of the critical percolation path approximation. The
anisotropic effective medium approximation is shown to predict the correct percolation threshold for an
anisotropic two-dimensional square lattice. In addition, results are compared with numerical simulations using
a fast kinetic Monte Carlo algorithm.
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I. INTRODUCTION

Diffusion in disordered media is an active field of r
search, due to its relevance in a wide variety of natural
industrial processes@1–3#. One of the traditional models fo
disorder is the random barrier model~RBM!, which consists
of equally energy minima separated by energy barriers,
height of which is randomly distributed according to a giv
probability density function~PDF!. In this model, a particle
moves from one minimum to another by performing th
mally activated jumps.

In these systems, diffusion properties can be studied ei
in time or frequency variables. Several studies of diffus
properties have been conducted in the isotropic RBM b
under unbiased@4–9# and biased@10,11# conditions. Follow-
ing a frequency analysis~Refs.@4,5#, and references therein!,
the system may be characterized by a zero-frequency d
sion constantD(s50), and a characteristic frequencys* ,
which marks the onset of frequency-dependent diffusi
D(s50) ands* follow Arrhenius laws with the same act
vation energyEc . Analogously, from a time variable stand
point, it takes a timet* ;s* 21 for a particle to reach a long
time diffusion regime in the RBM, characterized by
diffusion constantD(t→`)[D(s50) @8#. The activation
energyEc depends on the percolation properties of the latt
and the PDF of the energy barriers. This dependence is
ply achieved by the critical percolation path approximati
~CPPA!, as shown for isotropic problems@12–14#.

In view of the diversity of systems in which diffusio
takes place, the anisotropic generalization of diffusion pr
lems has attracted considerable attention in the last ye
both under unbiased@15–21# and biased@22–24# conditions.
A few examples of anisotropic systems are porous reser
rocks @3,21,25#, layered semiconducting compounds@26#,
and superconductor cuprates@27#. When dealing with aniso-
tropic conditions, diffusion properties are independen
studied in the different relevant directions of the system
was recently shown that, for a two-dimensional anisotro
bond percolation model, different activation energies
found in each direction@20#.

In the present paper, a two-dimensional unbiased di
sion process is studied with each direction characterized
1063-651X/2004/69~3!/031107~6!/$22.50 69 0311
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different continuous PDF. The paper is organized as follo
In Sec. II the anisotropic RBM is introduced. In Sec. III, th
model is studied within the anisotropic effective medium a
proximation ~EMA!. These results are compared again
Monte Carlo simulations, whose numerical details are giv
in Sec. IV. Section V is devoted to a description of the CP
ideas in anisotropic conditions, and in Sec. VI the conclud
remarks of the present paper are presented.

II. ANISOTROPIC RANDOM BARRIER MODEL

Diffusion processes will be studied on a two-dimension
square lattice with static disorder. Energy barriers are cho
from a given PDFr(E) at t50 and are kept constant durin
the diffusion process. Possible jumps are only allowed
tween nearest neighbors. Once the energy barrierEi j be-
tween sitesi and j is selected, the transition ratesv i j from
site i to site j are determined following an Arrhenius law:

v i j 5
v0

z
e2bEi j , ~1!

wherev0 is the constant jump rate,z54 is the coordination
number, andb51/kBT is the inverse temperature, withkB
being the Boltzmann constant. The energyEi j characterizes
the bond joining sitesi and j, thereforeEi j 5Eji , and the
forward (i→ j ) and backward (j→ i ) jumps have the same
transition rate.

In order to introduce the anisotropic character of the s
tem, theEi j energies are selected from different PDFs, d
pending on the orientation of the bond joining sitesi and j.
Let 1 and 2 be the main directions of the square lattice,
key idea is to introducer1(E1) and r2(E2) instead of a
single PDFr(E). The model is characterized by anisotrop
a5e1 /e2 and global mean energye5(e11e2)/2. The mean
energies in each direction,e1 ande2, are thus represented b
e152ae/(a11) ande252e/(a11). In the present work, a
constant value ofe50.5e0 is adopted, wheree0 sets the unit
of energy, and the effects of havingaÞ1 are studied. Two
different anisotropic distributions will be considered:~a! an
exponential PDF
©2004 The American Physical Society07-1
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r1~E1!5
1

e1
e2E1 /e1, E1P@0,̀ !,

r2~E2!5
1

e2
e2E2 /e2, E2P@0,̀ !, ~2!

and ~b! a uniform PDF

r1~E1!5
1

2d1e1
, E1P@~12d1!e1 ,~11d1!e1#,

r2~E2!5
1

2d2e2
, E2P@~12d2!e2 ,~11d2!e2#, ~3!

whered1 andd2 serve to control different distribution width
in each direction. This uniform PDF represents the most g
eral anisotropic extension of the isotropic uniform PDF us
in Ref. @8# to study diffusion in RBM. In the following, and
for the sake of simplicity, the widths of the uniform PDF w
bed15d250.5. Figure 1 shows the exponential and unifo
PDFs fora51 anda52.

III. ANISOTROPIC EMA: LOW TEMPERATURE
PREDICTIONS

The EMA self-consistent conditions provide a method
obtaining the diffusion coefficients for a given disorder
medium. Usually, these equations must be numeric
solved, except for some simple cases. It is showed in
section that for the low temperature limit, some analyti
predictions may be obtained within the RBM.

FIG. 1. Exponential~upper panel! and uniform ~lower panel!
probability density functions. Solid lines represent the anisotro
cases (a52) and dashed lines the isotropic cases.
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A. Self-consistent conditions

Many authors@28–31# have derived the EMA, which pro
vides a self-consistent method to obtain effective diffus
coefficients. The approach considers one impure bond of
disordered lattice as embedded in aneffective medium, mim-
icking the average surroundings. By imposing the avera
fluctuations to be zero, the self-consistent condition is
rived for the transition rate of the effective medium. For
hypercubicd-dimensional isotropic lattice in the long-tim
limit, this condition reads@2#

K ~v2s!

v1~d21!s L
n(v)

50, ~4!

wherev is the transition rate of the impure bond distribut
according to the PDFn(v), s is the transition rate of the
effective medium, and the brackets denote average over
PDF n(v). Solving the self-consistent condition fors, the
diffusion coefficient is obtained asD5sa2, wherea is the
lattice constant.

The anisotropic extension of such formalism, where th
exist n different directions, leads ton coupled equations tha
self-consistently solve for then different diffusion coeffi-
cients. In a two-dimensional square lattice, and for the lo
time limit, these conditions are@16,18#

K ~vm2sm!

vm1~ f mn
2121!sm

L
nm(vm)

50, ~5!

with

f mn5
2

p
arctanAsm

sn
~6!

andm,n51,2 denoting the principal axes of the lattice. T
effective transition ratess i are related to the diffusion con
stants byDi5s ia

2.
At high temperatures, the particle can easily overco

energy barriers, and eventually all diffusion constants
proach the same value. In Fig. 2, the normalized diffus
coefficients at high temperatures for the two-dimensio
square lattice with an exponential PDF are plotted as fu
tions of temperature, both under isotropic and anisotro
conditions. Lines represent the solutions of the EMA se
consistent conditions, Eqs.~4! and ~5!, and symbols corre-
spond to numerical simulations~see Sec. IV!. The figure
shows that, for high temperatures,Di /a2v0→1/z. Analo-
gous results are obtained using the uniform PDF. In the
lowing sections the predictions of EMA for diffusion at low
temperatures are considered.

B. Isotropic case

For an isotropic hypercubic lattice ind dimensions, Eq.
~4! may be written as

K ~v1~d21!s2ds!

v1~d21!s L
n(v)

50. ~7!

c
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By introducing the explicit dependence on energyv
5v(E) given in Eq.~1!, and transforming the transition rat
average overn(v) to an energy average overr(E), Eq. ~7!
becomes

K 1

v~E!1~d21!s L
r(E)

5
1

ds
. ~8!

For b→` the transition ratev(E) varies extremely rapidly,
due to its exponential dependence. Therefore it is possib
define an energy valueEc such that two possibilities arise
v(E)@(d21)s for E,Ec or v(E)!(d21)s for E.Ec .
The characteristic valueEc can be therefore defined as

v~Ec!5~d21!s. ~9!

For values ofE,Ec , the left-hand side of Eq.~8! vanishes.
Alternatively, for E.Ec the valuev(E) on the left-hand
side of Eq.~8! may be ignored. Taking these conditions in
account, and averaging overr(E), Eq. ~8! for b→` be-
comes

1

ds
5E

Ec

` r~E!

~d21!s
dE, ~10!

or, equivalently,

E
0

Ec
r~E!dE5

1

d
. ~11!

In the EMA, the bond percolation threshold of the hyp
cubic lattice is given bypc

EMA5d21 @28–31#. Therefore, Eq.
~11! is a condition overEc for each particular PDFr(E), in
terms of the percolation properties of the lattice. Inde
combining this value ofEc with Eq. ~9!, the EMA diffusion
coefficient for isotropicd-dimensional hypercubic lattices a
low temperatures is given by

D5
v0a2

z~d21!
e2bEc. ~12!

FIG. 2. Diffusion coefficients at high temperatures. Lines cor
spond to the EMA solution and symbols to numerical simulatio
The isotropic case is represented by a dashed line and the a
tropic casea52 by continuous lines.
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It is worth noting thatpc
EMA5d21 is only exact ford52

@32#, therefore Eq.~12! does not give the correct exponenti
behavior ford53, and other approximations, such as CPP
should be considered@7#.

C. Anisotropic two-dimensional case

For the anisotropic two-dimensional case, Eq.~5! turns
into two self-consistent conditions, with transition rate PD
n1(v1) and n2(v2), for each direction of the lattice. By
introducing the energy dependencev15v(E1) and v2
5v(E2), the two self-consistent conditions read

K 1

v~E1!1~ f 12
2121!s1

L
r1(E1)

5
f 12

s1
,

K 1

v~E2!1~ f 21
2121!s2

L
r2(E2)

5
f 21

s2
. ~13!

Again, the PDFs change abruptly forb→`, and a param-
eterEc can be defined as in the isotropic case. However,Ec
is expected to be characteristic of the underlying ene
landscape, so the diffusion coefficients in each direction
expected to be governed by a singleEc . For the anisotropic
case, an energyEc will be defined separating two limiting
conditions simultaneously:v(E1)!( f 12

2121)s1 and v(E2)
!( f 21

2121)s2 for E1 and E2 larger thanEc , and v(E1)
@( f 12

2121)s1 and v(E2)@( f 21
2121)s2 for E1 and E2

smaller thanEc . Thus, Ec must verify two simultaneous
conditions

v~Ec!5~ f 12
2121!s1 ,

v~Ec!5~ f 21
2121!s2 . ~14!

In this way, a set of equations analogous to Eq.~11! are
obtained,

E
0

Ec
r1~E1!dE15 f 12,

E
0

Ec
r2~E2!dE25 f 21. ~15!

By adding Eqs.~15!, using Eq.~6! and trigonometric rela-
tions, an expression is arrived at,

E
0

Ec
r1~E1!dE11E

0

Ec
r2~E2!dE251, ~16!

which gives the activation energyEc as a function of the
anisotropya. Moreover, by replacing the expressions in Eq
~15! for f 12 and f 21 in Eqs.~14!, and solving fors1 ands2,
the corresponding anisotropic diffusion coefficients are
tained:

-
.
so-
7-3
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D15

E
0

Ec
r1~E1!dE1

E
0

Ec
r2~E2!dE2

v0a2

z
e2bEc,

D25

E
0

Ec
r2~E2!dE2

E
0

Ec
r1~E1!dE1

v0a2

z
e2bEc. ~17!

The isotropic result, Eq.~12!, is obviously recovered by set
ting r15r2.

Figures 3 and 4 show Arrhenius plots of the anisotro
diffusion coefficients at low temperatures, corresponding
the exponential and uniform PDFs, respectively. The solu

FIG. 3. Arrhenius plot of the diffusion coefficients for an exp
nential PDF. The solution of the self-consistent EMA conditions
represented with a dashed line for the isotropic case and with
tinuous lines for the anisotropica52 cases. Dotted lines represe
the analytical EMA predictions, Eqs.~17!, for low temperatures.
Symbols correspond to SMC~standard Monte Carlo! and FKMC
~fast kinetic Monte Carlo! simulations, as indicated.

FIG. 4. Arrhenius plot of the diffusion coefficients for a unifor
PDF. The solution of the self-consistent EMA conditions is rep
sented with a dashed line for the isotropic case and with continu
lines for the anisotropica52 cases. Dotted lines represent the an
lytical EMA predictions, Eqs.~17!, for low temperatures. Symbol
correspond to FKMC simulations.
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of EMA self-consistent conditions, Eqs.~4! and~5!, are rep-
resented with dashed and continuous lines, for the isotro
and anisotropica52 cases, respectively. Dotted lines repr
sent the prediction of EMA for the low temperature lim
Eqs.~17!. Symbols are the results of numerical simulation
as described in the following section. These figures show
the diffusion coefficients in each direction follow Arrheniu
laws with the same activation energy. Even though simu
tion data at lower temperatures are needed, the agree
with the low temperature anisotropic diffusion coefficients
better for a uniform PDF than for an exponential PDF.

IV. NUMERICAL SIMULATIONS

Monte Carlo simulations were performed to obtain lon
time diffusion coefficients for comparison with anisotrop
EMA predictions. The energy landscape was selected fr
the corresponding PDF att50 and kept fixed during the
diffusion process. Att50 a particle was assigned to a ra
dom initial site i. Different Monte Carlo algorithms may b
used at this point and two possibilities were considered: s
dard Monte Carlo~SMC! @8# and a fast kinetic Monte Carlo
~FKMC! @33# scheme. A brief description of these methods
given in the following.

In SMC, the particle selects at random one of its near
neighborsj and tries to overcome the barrier between th
in a time unit. A random numberjP(0,1) is generated such
that if j,v i j the jump is effective, otherwise the partic
stays at the initial site. In this process, one unit of time
used for every jump trial. Although SMC simulations prove
to be very useful for studying diffusion processes, it w
shown that it is not too appropriate for studying low tem
perature regimes@5,8,33#. At low temperatures, the transitio
rates decrease exponentially with increasingb, and the ran-
dom numberj is, mostly, orders of magnitude greater th
the transition rates, making the number of effective jum
~displacements! very small and the long-time diffusion re
gime difficult to reach.

In the FKMC @33# scheme, consider the particle in a sitei
on a lattice with itsz nearest neighborsj ( j 51, . . . ,z). The
transition rates fromi to j are denoted byv i j . The total
transition ratev i from site i is defined as

v i5(
j 51

z

v j i . ~18!

Instead of selecting the neighbor at random, as in SMC
neighbork is selected for an effective jump given that

1

v i
(
j 51

k21

v j i ,j1<
1

v i
(
j 5k

z

v j i , ~19!

where j1 is randomly uniformly distributed in (0,1). The
time variablet is then increased int8, where t8 is chosen
from an exponential distribution with mean waiting tim
v i

21 . Therefore,

t852
1

v i
ln j2 , ~20!

n-

-
us
-
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DIFFUSION AND PERCOLATION IN ANISOTROPIC . . . PHYSICAL REVIEW E 69, 031107 ~2004!
with j2 randomly uniformly distributed in (0,1). This proce
dure is repeated from sitek and so on. In the FKMC algo
rithm, each jump trial is effective, meaning that the parti
always jumps to one of its neighbors, and the time elapse
one jump is accordingly adjusted. Furthermore, the FKM
algorithm depends on the ratiosv j i /v i and consequently i
is not asb dependent asv j i @33#. This algorithm allows us to
reach larger values ofb in simulations of the diffusion pro-
cess.

Simulations were performed on 3003300 and 5003500
sites square lattices for the SMC and FKMC, respectiv
with periodic boundary conditions. For each algorithm, t
mean square displacements on each direction^r 1

2(t)& and
^r 2

2(t)& were computed, averaging over between 2000
5000 realizations of the random walks. The long-time dif
sion coefficients were defined through^r 1(2)

2 (t)&52D1(2)t,
and were obtained from the best linear fits to the long-ti
mean square displacements.

In Figs. 3 and 4, numerical simulations and EMA resu
are presented together. In Fig. 3, SMC simulations are p
ted up tobe0510 and some FKMC simulation points a
shown for comparison. Both algorithms coincide within t
numerical precision. In Fig. 4, only FKMC results are pr
sented up to a valuebe0530. Monte Carlo simulations do
not completely reach the asymptotic low temperatures
havior. However, numerical simulations and EMA seem
agree very well in the accessible temperature range.

V. CRITICAL PERCOLATION PATH APPROXIMATION

The idea of a percolation path governing diffusion at lo
temperatures was first developed in Ref.@12# and rigorously
proved later@13,14#. In this section, this idea will be briefly
summarized and extended to anisotropic conditions.

At low temperatures the characteristic Arrhenius diffusi
energyEc can be related to the bond percolation threshold
the lattice. Consider a random walk on a realization of
disorder energy landscape at a very low temperature. In o
to overcome a barrier with an energyE8, the particle spends
a mean waiting timet8;exp(bE8). For short times, there
fore, the particle can only move to sites which are connec
by low energy barriers and is surrounded by a perimete
higher energy. Roughly, at timet8 the particle might jump
barriers withE<E8, and the probability to overcome thi

barriers is*0
E8r(E)dE. For longer times, the particle coul

overcome the lowest barrier of the perimeter, and acce
new region with a higher energy perimeter. These regions
noncompact in the sense that they may have inside bar
that belong to the perimeter barriers. Eventually, there ex
a particular barrier of heightEc , beyond which the particle
gains access to the whole system, through the correspon
percolation path of energiesE<Ec . Thus, for an isotropic
medium,Ec is given by

E
0

Ec
r~E!dE5pc , ~21!

where pc is the bond percolation threshold of the syste
(pc50.5 for the two-dimensional isotropic square latti
03110
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@32#!. It has been shown thatEc is the highest energy barrie
which the particle must overcome in order to gain full acce
to the percolation network. The long-time diffusion coef
cient must therefore beD;exp(2bEc), which is indeed the
observed behavior of isotropic diffusion at low temperatu
@4,8#.

The percolation threshold of a particular lattice, which
given by a pointpc for isotropic percolation, becomes fo
anisotropic percolation a critical surfacew($pi%)50 @34#,
where$pi% denotes the set of relevant occupation probab
ties. For example, the percolation function isw(p)5p2pc
for isotropic percolation,w(p1 ,p2)5p11p221 for the
square lattice, andw(p1 ,p2 ,p3)5p11p21p32p1p2p321
for the triangular lattice@34#. Furthermore, the critical sur
face implies a change in the morphology of the incipie
percolation network.

In the anisotropic RBM context, the occupation probab
ties of a bond with energy barrierE, i.e., accessibility condi-
tion of the bond, is given by the probability ofE being lower
than the maximum accessible barrier. Therefore, the ge
alization of Eq.~21! to anisotropic conditions becomes

wS H E
0

Ec
r i~Ei !dEi J D 50. ~22!

Note that there exists just one energyEc , which is the same
for all directions, and gives full access to the whole anis
tropic percolation network. For the anisotropic RBM on
square lattice, Eq.~22! becomes equal to the EMA predic
tion, Eq. ~16!. This means that EMA predicts the corre
critical percolation surfacew(p1 ,p2)5p11p221 for aniso-
tropic bond percolation in the square lattice@15,17#.

Figure 5 shows the effect of anisotropya on Ec(a) for
the energy distributions studied in the present model,
predicted both by CPPA, Eq.~22!, and EMA, Eq.~16!. For
the exponential PDF, the condition forEc reads exp
(2Ec /e1)1exp(2Ec /e2)51, which was numerically solved
For the uniform PDF Eq.~16! givesEc /e052a/(a11)2.

VI. CONCLUDING REMARKS

In this paper, diffusion properties were studied using
anisotropic RBM, with emphasis on the low temperature

FIG. 5. Dependence of the activation energyEc on the aniso-
tropic parametera for the exponential and uniform PDFs studie
here.
7-5
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havior and on percolation properties. Two kind of PDFs w
used to characterize different directions of the latti
namely, exponential and uniform PDFs. The anisotro
EMA was used to calculate the long-time diffusion propert
for all temperatures, derived from the numerical solutions
the self-consistent conditions expressed in Eqs.~5!. Further-
more, analytical expressions for the diffusion coefficients
low temperatures were obtained, Eq.~17!, which show that
diffusion in different directions follows Arrhenius laws wit
a same activation energyEc . This should be compared wit
the thermally activated diffusion in anisotropic bond perc
lation lattices, in which different activation energies a
found for each direction@20#. In the present model, only on
activation energy is found due to the existence of an an
tropic percolation path of low energy barriers, which gove
the diffusion process. Besides giving the activation ene
for diffusion, EMA predicts the exponential prefactor for di
fusion and it dependence with the anisotropy of the dis
dered system.

The two Monte Carlo algorithms used here, namely, SM
and FKMC, show a very good agreement with the EM
predictions for the diffusion coefficients in the accessi
temperature range. For a more extensive comparison
EMA, other algorithms should be used.
-

s.

s.

s.
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In the present paper, a connection was established
tween EMA and CPPA ideas, and EMA was shown to pred
the correct activation energy for anisotropic diffusion in t
square lattice. For other geometries and dimensions,
expected that EMA will still predict an Arrhenius behavio
but with an activation energy that differs from that predict
by CPPA. This difference is due to the fact that CPPA u
the percolation threshold as a parameter, while EMA pred
its own percolation threshold. However, EMA is known
predict the correct percolation threshold only for the squ
lattice, even in anisotropic conditions@15,17#. Concerning
CPPA, corrections of the formby become relevant for di-
mensions greater than two, but it is not clear which of bo
approximations, EMA or CPPA, give better results@7# and a
systematic comparison turns necessary. Additional work
this direction is now under progress.
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